Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Med Genet ; 60(1): 13-24, 2023 01.
Article in English | MEDLINE | ID: mdl-34876503

ABSTRACT

INTRODUCTION: Arthrogryposis multiplex congenita (AMC) refers to a clinical presentation of congenital contractures involving two or more body areas. More than 400 distinct conditions may lead to AMC, making the aetiological diagnosis challenging. The objective of this work was to set up evidence-based recommendations for the diagnosis of AMC by taking advantage of both data from our nation-wide cohort of children with AMC and from the literature. MATERIAL AND METHODS: We conducted a retrospective single-centre observational study. Patients had been evaluated at least once at a paediatric age in the AMC clinic of Grenoble University Hospital between 2007 and 2019. After gathering data about their diagnostic procedure, a literature review was performed for each paraclinical investigation to discuss their relevance. RESULTS: One hundred and twenty-five patients were included, 43% had Amyoplasia, 27% had distal arthrogryposis and 30% had other forms. A definitive aetiological diagnosis was available for 66% of cases. We recommend a two-time diagnostic process: first, non-invasive investigations that aim at classifying patients into one of the three groups, and second, selected investigations targeting a subset of patients. CONCLUSION: The aetiological management for patients with AMC remains arduous. This process will be facilitated by the increasing use of next-generation sequencing combined with detailed phenotyping. Invasive investigations should be avoided because of their limited yield.


Subject(s)
Arthrogryposis , Humans , Child , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing , Observational Studies as Topic
2.
J Cardiovasc Dev Dis ; 11(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38248881

ABSTRACT

This article is the third in our series dedicated to the analysis of cardiac myoarchitecture as a nematic chiral liquid crystal (NCLC). Previously, we introduced the concept of topological defects (disclinations) and focused on their visual identification inside the compact myocardium. Herein, we investigate these using a mathematical and automated algorithm for the reproducible identification of a larger panel of topological defects throughout the myocardium of 13 perinatal and 11 early infant hearts. This algorithm identified an average of 29 ± 11 topological defects per slice with a 2D topological charge of m = +1/2 and an average of 27 ± 10 topological defects per slice with a 2D topological charge of m = -1/2. The excess of defects per slice with a 2D topological charge of m = +1/2 was statistically significant (p < 0.001). There was no significant difference in the distribution of defects with a 2D topological charge of m = +1/2 and m = -1/2 between perinatal and early infant hearts. These defects were mostly arranged in pairs, as expected in nematics, and located inside the trabecular myocardium. When isolated, defects with a 2D topological charge of m = +1/2 were located near the luminal extremity of the trabeculae and those with a 2D topological charge of m = -1/2 were located at the anterior and posterior part of the interventricular septum. These findings constitute an advance in the characterization of the deep cardiac myoarchitecture for application in developmental and pathological studies.

3.
J Cardiovasc Dev Dis ; 9(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36354770

ABSTRACT

This is our second article devoted to the cardiac myoarchitecture considered as a nematic chiral liquid crystal (NCLC). While the first article focused on the myoarchitecture of the left ventricle (LV), this new article extends to the whole ventricular mass and introduces the concept of disclinations and topological singularities, which characterize the differences and relationships between the left and right ventricles (RV). At the level of the ventricular apices, we constantly observed a vortex shape at the LV apex, corresponding, in the terminology of liquid crystals, to a "+1 disclination"; we never observed this at the RV apex. At the level of the interventricular septum (IVS), we identified "-1/2 disclinations" at the anterior and posterior parts. During the perinatal period, there was a significant difference in their distribution, with more "-1/2 disclinations" in the posterior part of the IVS. After birth, concomitant to major physiological changes, the number of "-1/2 disclinations" significantly decreased, both in the anterior and posterior parts of the IVS. Finally, the description of the disclinations must be considered in any attempt to segment the whole ventricular mass, in biomechanical studies, and, more generally, for the characterization of myocardial remodeling.

4.
Epilepsia ; 63(4): 974-991, 2022 04.
Article in English | MEDLINE | ID: mdl-35179230

ABSTRACT

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Intellectual Disability , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/genetics , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Phenotype , Seizures/genetics
5.
J Med Genet ; 59(6): 559-567, 2022 06.
Article in English | MEDLINE | ID: mdl-33820833

ABSTRACT

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Arthrogryposis/pathology , Genomics , Humans , Pedigree , Phenotype , Proteins/genetics , Transcription Factors/genetics , Exome Sequencing
6.
J Cardiovasc Dev Dis ; 8(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34940534

ABSTRACT

There are still grey areas in the understanding of the myoarchitecture of the ventricular mass. This is despite the progress of investigation methods since the beginning of the 21st century (diffusion tensor magnetic resonance imaging, microcomputed tomography, and polarised light imaging). The objective of this article is to highlight the specificities and the limitations of polarised light imaging (PLI) of the unstained myocardium embedded in methyl methacrylate (MMA). Thus, to better differentiate our method from other PLI modes, we will refer to it by the acronym PLI-MMA. PLI-MMA shows that the myosin mesh of the compact left ventricular wall behaves like a biological analogous of a nematic chiral liquid crystal. Results obtained by PLI-MMA are: the main direction of the myosin molecules contained in an imaged voxel, the crystal liquid director n, and a regional isotropy index RI that is an orientation tensor, the equivalent of the crystal liquid order parameter. The vector n is collinear with the first eigenvector of diffusion tensor imaging (DTI-MRI). The RI has not been confounded with the diffusion tensor of DTI that gives information about the three eigenvectors of the ellipsoid of diffusion. PLI-MMA gives no information about the collagen network. The physics of soft matter has allowed the revisiting of Streeter's conjecture on the myoarchitecture of the compact left ventricular wall: "geodesics on a nested set of toroidal surfaces". Once the torus topology is understood, this characterisation of the myoarchitecture is more accurate and parsimonious than former descriptions. Finally, this article aims to be an enthusiastic invitation to a transdisciplinary approach between physicists of liquid crystals, anatomists, and specialists of imaging.

7.
Hum Mutat ; 41(12): 2167-2178, 2020 12.
Article in English | MEDLINE | ID: mdl-33131162

ABSTRACT

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.


Subject(s)
Fetus/abnormalities , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , High-Throughput Nucleotide Sequencing , Cytogenetic Analysis , Family , Female , Heterozygote , Homozygote , Humans , Male , Mutation/genetics , Pedigree
8.
Front Pediatr ; 8: 503054, 2020.
Article in English | MEDLINE | ID: mdl-33072668

ABSTRACT

Background: The pathognomonic feature of tetralogy of Fallot (ToF) is the antero-cephalad deviation of the outlet septum in combination with an abnormal arrangement of the septoparietal trabeculations. Aims: The aim of this article was to study perinatal hearts using Polarized Light Imaging (PLI) in order to investigate the deep alignment of cardiomyocytes that bond the different components of the ventricular outflow tracts both together and to the rest of the ventricular mass, thus furthering the classic description of ToF. Methods and Materials: 10 perinatal hearts with ToF and 10 perinatal hearts with no detectable cardiac anomalies (control) were studied using PLI. The orientation of the myocardial cells was extracted and studied at high resolution. Virtual dissections in multiple section planes were used to explore each ventricular structure. Results and Conclusions: Contrary to the specimens of the control group, for all ToF specimens studied, the deep latitudinal alignment of the cardiomyocytes bonds together the left part of the Outlet septum (OS) S to the anterior wall of the left ventricle. In addition, the right end of the muscular OS bonds directly on the right ventricular wall (RVW) superior to the attachment of the ventriculo infundibular fold (VIF). Thus, the OS is a bridge between the lateral RVW and the anterior left ventricular wall. The VIF, RVW, and OS define an "inverted U" that roofs the cone between the interventricular communication and the overriding aorta. The opening angle and the length of the branches of this "inverted U" depend however on three components: the size of the OS, the size of the VIF, and the distance between the points of insertion of the OS and VIF into the RVW. The variation of these three components accounts for a significant part of the diversity observed in the anatomical presentations of ToF in the perinatal period.

9.
Pathobiology ; 87(5): 302-310, 2020.
Article in English | MEDLINE | ID: mdl-32927453

ABSTRACT

Multicystic renal dysplasia is a congenital cystic anomaly of the kidney caused by abnormal metanephric differentiation with immature tubules. It is surrounded by mesenchymal collars and islands of immature mesenchyma present between the cysts. The PI3K-AKT-mTOR signaling pathway is a key regulator involved in cell growth, proliferation, motility, survival, and apoptosis. Activation of the PI3K-AKT-mTOR pathway results in the survival and proliferation of tumor cells in many cancers. The aim of this study is to analyze the topographic expression of phospho-AKT, phospho-mTOR, and phospho-70S6K in renal development and in the multicystic dysplastic kidney (MCDK). A total of 17 fetal kidneys of development age from the first to the third trimester and 13 cases of pathological kidneys with MCDK were analyzed by immunohistochemistry in order to evaluate the expression of phospho-AKT (S473), phospho-mTOR, and phospho-70S6K. Phospho-AKT and phospho-mTOR were expressed early in renal development and in an identical manner for every structure derived from the ureteric bud, such as collecting ducts and urothelium. Phospho-p70S6K was expressed early in the urothelium and in glomerular mesangial cells. Later, their expressions differed according to the needs of cell proliferation and differentiation over time by becoming more selective. In MCDK, phospho-AKT, phospho-mTOR, and phospho-70S6K have the same profile: a high cytoplasmic expression in cystic epithelium, loose mesenchyma, and primitive tubes. This study demonstrates the essential and specific role of the PI3K-AKT-mTOR pathway in the formation of cysts in multicystic renal dysplasia.


Subject(s)
Kidney/pathology , Multicystic Dysplastic Kidney/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Cell Differentiation , Cell Proliferation , Cysts/physiopathology , Female , Humans , Immunohistochemistry , Kidney/cytology , Kidney/metabolism , Male , Multicystic Dysplastic Kidney/pathology , Proto-Oncogene Proteins c-akt/genetics , Qualitative Research , Retrospective Studies , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
10.
J Med Genet ; 57(7): 466-474, 2020 07.
Article in English | MEDLINE | ID: mdl-32277047

ABSTRACT

PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.


Subject(s)
Craniofacial Abnormalities/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Marfan Syndrome/genetics , Mental Retardation, X-Linked/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Child , Chromatin Assembly and Disassembly , Craniofacial Abnormalities/pathology , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/pathology , Male , Marfan Syndrome/pathology , Mental Retardation, X-Linked/pathology , Middle Aged , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Exome Sequencing , Young Adult
11.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Article in English | MEDLINE | ID: mdl-32227665

ABSTRACT

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , RNA-Binding Proteins/genetics , Thrombocytopenia/genetics , Upper Extremity Deformities, Congenital/genetics , 5' Untranslated Regions , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 1 , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Radius/pathology , Young Adult
12.
Front Pediatr ; 8: 69, 2020.
Article in English | MEDLINE | ID: mdl-32175295

ABSTRACT

Aorto-left ventricular tunnel (ALVT) is a rare congenital heart defect. Surgery has to be performed early to avoid life-threatening complications. Prenatal diagnosis of this defect is challenging. We report a case of ALVT diagnosed in a fetus showing premature severe cardiac failure at 24 GA. The new born was operated at day 3 of life with good results. Two years later, he is still doing well recovering a complete normal cardiac function. ALVT should be suggested in front of any fetal cardiac failure. Thanks to early diagnosis, prompt neonatal management can be organized and allows positive outcome.

14.
Am J Med Genet C Semin Med Genet ; 181(3): 337-344, 2019 09.
Article in English | MEDLINE | ID: mdl-31368648

ABSTRACT

Arthrogryposis multiplex congenita, or AMC, is a clinical sign defined as congenital contractures of at least two joint levels. These joint contractures are always secondary to diminished fetal movement which can have numerous causes that affect any part of the anatomical structures implicated in movement: the central nervous system, the anterior horn cell, the nerve, the neuromuscular junction, the muscle, or the joint itself. Make a precise diagnosis of the cause in a patient with multiple joint contractures is therefore challenging. The aim of this article is to summarize the use and diagnostic value of common examinations and analyses performed postnatally in patients affected by AMC from a literature review. We also compare this data with results from our clinical practice. Even though it is difficult to give precise guidelines today, it appears that genetic studies, such as whole exome or genome analysis in all patients and chromosomal microarray analysis in patients with intellectual disability and AMC should be preferred as first tier investigations over EMG and muscle biopsy.


Subject(s)
Arthrogryposis/diagnosis , Arthrogryposis/genetics , Genome-Wide Association Study/methods , Humans , Intellectual Disability/genetics
16.
Mol Genet Genomic Med ; 7(4): e00569, 2019 04.
Article in English | MEDLINE | ID: mdl-30729724

ABSTRACT

BACKGROUND: Mutations in mediator of RNA polymerase II transcription subunit 12 homolog (MED12, OMIM 300188) cause X-linked intellectual disability (XLID) disorders including FG, Lujan, and Ohdo syndromes. The Gli3-dependent Sonic Hedgehog (SHH) signaling pathway has been implicated in the original FG syndrome and Lujan syndrome. How are SHH-signaling defects related to the complex clinical phenotype of MED12-associated XLID syndromes are not fully understood. METHODS: Quantitative RT-PCR was used to study expression levels of three SHH-signaling genes in lymophoblast cell lines carrying four MED12 mutations from four unrelated XLID families. Genotype and phenotype correlation studies were performed on these mutations. RESULTS: Three newly identified and one novel MED12 mutations in six affected males from four unrelated XLID families were studied. Three mutations (c.2692A>G; p.N898D, c.3640C>T; p.R1214C, and c.3884G>A; p.R1295H) are located in the LS domain and one (c.617G>A; p.R206Q) is in the L domain of MED12. These mutations involve highly conserved amino acid residues and segregate with ID and related congenital malformations in respective probands families. Patients with the LS-domain mutations share many features of FG syndrome and some features of Lujan syndrome. The patient with the L-domain mutation presented with ID and predominant neuropsychiatric features but little dysmorphic features of either FG or Lujan syndrome. Transcript levels of three Gli3-dependent SHH-signaling genes, CREB5, BMP4, and NEUROG2, were determined by quantitative RT-PCR and found to be significantly elevated in lymphoblasts from patients with three mutations in the MED12-LS domain. CONCLUSIONS: These results support a critical role of MED12 in regulating Gli3-dependent SHH signaling and in developing ID and related congenital malformations in XLID syndromes. Differences in the expression profile of SHH-signaling genes potentially contribute to variability in clinical phenotypes in patients with MED12-related XLID disorders.


Subject(s)
Craniofacial Abnormalities/genetics , Mediator Complex/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Adult , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Craniofacial Abnormalities/pathology , Cyclic AMP Response Element-Binding Protein A/genetics , Cyclic AMP Response Element-Binding Protein A/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Male , Mediator Complex/chemistry , Mediator Complex/metabolism , Mental Retardation, X-Linked/pathology , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Protein Domains , Signal Transduction
17.
Am J Med Genet A ; 179(4): 650-654, 2019 04.
Article in English | MEDLINE | ID: mdl-30737907

ABSTRACT

The AMME syndrome defined as the combination of Alport syndrome, intellectual disability, midface hypoplasia, and elliptocytosis (AMME) is known to be a contiguous gene syndrome associated with microdeletions in the region Xq22.3q23. Recently, using exome sequencing, missense pathogenic variants in AMMECR1 have been associated with intellectual disability, midface hypoplasia, and elliptocytosis. In these cases, AMMECR1 gene appears to be responsible for most of the clinical features of the AMME syndrome except for Alport syndrome. In this article, we present two unrelated male patients with short stature, mild intellectual disability or neurodevelopmental delay, sensorineural hearing loss, and elliptocytosis harboring small microdeletions identified by array-CGH involving TMEM164 and AMMECR1 genes and SNORD96B small nucleolar RNA for one patient, inherited from their mothers. These original cases further confirm that most specific AMME features are ascribed to AMMECR1 haploinsufficiency. These cases reporting the smallest microdeletions encompassing AMMECR1 gene provide new evidence for involvement of AMMECR1 in the AMME phenotype and permit to discuss a phenotype related to AMMECR1 haploinsufficiency: developmental delay/intellectual deficiency, midface hypoplasia, midline defect, deafness, and short stature.


Subject(s)
Chromosome Deletion , Chromosomes, Human, X/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Elliptocytosis, Hereditary/genetics , Elliptocytosis, Hereditary/pathology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Membrane Proteins/genetics , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Proteins/genetics , Child , Humans , Male , Prognosis
18.
Eur J Med Genet ; 62(6): 103530, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30142438

ABSTRACT

The CACNA1A gene encodes a calcium-dependent voltage channel, localized in neuronal cells. Pathogenic variants in this gene are known to lead to a broad clinical spectrum including episodic ataxia type 2, spinocerebellar ataxia type 6, familial hemiplegic migraine, and more recently epileptic encephalopathy. We report a large family revealing a wide variability of neurological manifestations associated with a CACNA1A missense pathogenic variant. The index case had early-onset epileptic encephalopathy with progressive cerebellar atrophy, although his mother and his great-grandmother suffered from paroxystic episodic ataxia. His grandfather and great grand-aunt reported no symptoms, but two of her sons displayed early-onset ataxia with intellectual disability. Two of her little daughters suffered from gait disorders, and also from epilepsy for one of them. All these relatives were carriers of the previously described heterozygous variant in CACNA1A gene. We report here the first family leading to major clinical variability and incomplete penetrance. Our family highlights the difficulties to provide accurate genetic counselling concerning prenatal diagnosis regarding highly variable severity of the clinical presentation.


Subject(s)
Calcium Channels/genetics , Mutation, Missense , Penetrance , Spinocerebellar Degenerations/genetics , Adult , Aged , Child , Female , Humans , Male , Pedigree , Spinocerebellar Degenerations/pathology
19.
Phys Med Biol ; 63(21): 215003, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30265658

ABSTRACT

Diffusion tensor imaging (DTI) is a non-invasive technique used to obtain the 3D fiber structure of whole human hearts, for both in vivo and ex vivo cases. However, by essence, DTI does not measure directly the orientations of myocardial fibers. In contrast, polarized light imaging (PLI) allows for physical measurements of fiber orientations, but only for ex vivo case. This work aims at quantitatively comparing the myocardial fiber orientations of whole human hearts obtained from cardiac DTI with those measured by PLI. Whole human neonatal and infant hearts were first imaged using DTI. The same whole hearts were then imaged using PLI. After DTI and PLI data are registered, the orientations of fibers from the two imaging modalities were finally quantitatively compared. The results show that DTI and PLI have similar variation patterns of elevation and azimuth angles, with some differences in transmural elevation angle range. DTI itself induces an underestimation of the range of transmural elevation angles by a factor of about 25° at the basal and equatorial slices and the reduction of spatial resolution further decreases this range. PLI data exhibit a 15° ± 5° (P < 0.01) narrower transmural elevation angle range at apical slices than in basal or equatorial slices. This phenomenon is not observed in DTI data. In both modalities, the azimuth angle maps exhibit curved or twisting boundaries at the basal and apical slices. The experimental results globally enforce DTI as a valid imaging technique to reasonably characterize fiber orientations of the human heart noninvasively.


Subject(s)
Diffusion Tensor Imaging/methods , Heart/anatomy & histology , Image Processing, Computer-Assisted/methods , Myocardium/pathology , Neuroimaging/methods , Optical Imaging/methods , Heart/physiology , Humans , Infant , Infant, Newborn
20.
Clin Genet ; 94(6): 575-580, 2018 12.
Article in English | MEDLINE | ID: mdl-30221343

ABSTRACT

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Subject(s)
Chromosomes, Human, Pair 19 , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , Gene Duplication , Genetic Association Studies , Genetic Predisposition to Disease , Genomic Imprinting , Adult , Biopsy , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Female , Genetic Association Studies/methods , Genetic Testing , Humans , Immunohistochemistry , Neoplasm Proteins/genetics , Pregnancy , Ultrasonography, Prenatal
SELECTION OF CITATIONS
SEARCH DETAIL
...